
Syntax Analysis
Prof. James L. Frankel

Harvard University

Version of 6:07 PM 19-Sep-2023
Copyright © 2023, 2022, 2018, 2015 James L. Frankel. All rights reserved.

Context-Free Grammar (CFG)

• terminals basic symbols from which strings are formed;
 also called tokens

• non-terminals syntactic variables that denote sets of strings

• start symbol strings denoted by the start symbol is the language
 generated by the grammar

• productions <head> → <body>
 or or or

 <left side> ::= <right side>

2

Context-Free Grammar for Simple Expressions

• E → E + T | E – T | T
T → T * F | T / F | F
F → (E) | id

• E, T, and F are non-terminals

• E is the start symbol

• +, –, *, /, (,), and id are terminals

• E is an abbreviation for Expression (sometimes referred to as Expr)

• T is an abbreviation for Term

• F is an abbreviation for Factor

3

CFG Notational Conventions (1 of 3)

• Terminals Lowercase letters early in alphabet (a, b, c, …)
 Operators
 Punctuation
 Digits
 Boldface string denoting terminal symbols (such as
 id and if)

• Non-terminals Uppercase letters early in alphabet (A, B, C, …)
 S is usually the start symbol
 Lowercase italic names (expr, stmt, …)
 E, T, F

4

CFG Notational Conventions (2 of 3)

• Grammar symbols Uppercase letters late in the alphabet
(either non-terminals (X, Y, Z)
or terminals)

• Possibly empty Lowercase letters late in the alphabet (u, v,
strings of terminals …, z)

• Possibly empty Lowercase Greek letters (α, β, γ, …)
strings of grammar
symbols

5

CFG Notational Conventions (3 of 3)

• Set of productions A → α1 , A → α2 , …, A → αk are called
with a common head A-productions and may be rewritten as
 A → α1 | α2 | … | αk

• Unless otherwise specified, the head of the first production is the
start symbol

6

CFG Derivation

• Derivation is the process of using productions as rewriting rules

• If A → γ is a production, then
 αAβ ⇒ αγβ

where ⇒ means “derives in one step”

• ⇒* means “derives in zero or more steps”

• ⇒+ means “derives in one or more steps”

7

Leftmost and Rightmost Derivations

• In leftmost derivations, the leftmost non-terminal in each sentential is
always chosen.

• This is denoted by
 α ⇒lm β

• In rightmost derivations, the rightmost non-terminal in each
sentential is always chosen.

• These are also called canonical derivations

• This is denoted by
 α ⇒rm β

8

Leftmost & Rightmost Derivation of –(id+id)

• Given the grammar: E → E + E | E * E | – E | (E) | id,
derive –(id+id)

• E ⇒lm –E⇒lm –(E)⇒lm –(E + E)⇒lm –(id + E)⇒lm –(id + id)

• E ⇒rm –E⇒rm –(E)⇒rm –(E + E)⇒rm –(E + id)⇒rm –(id + id)

9

Ambiguity in Leftmost Derivation of id+id*id

• Given the grammar: E → E + E | E * E | – E | (E) | id,
derive id+id*id

• Two distinct leftmost derivations exist:

• E ⇒lm E + E⇒lm id + E⇒lm id + E * E⇒lm id + id * E⇒lm id + id * id

• E ⇒lm E * E⇒lm E + E * E⇒lm id + E * E⇒lm id + id * E⇒lm id + id * id

• Therefore, this grammar is ambiguous

10

Translation of a regex into a CFG

• The regex:
 ba*bba

 and the context-free grammar:
 A0 → bA1

 A1 → aA1 | A2
 A2 → bba

 derive the same language

11

Balanced parentheses

• The context-free grammar:

 A → (A) A | ε

 derives any number of balanced parentheses

• This cannot be derived using a regex

• Colloquially, we say that “a finite automata cannot count”

12

Ambiguous else matching

• stmt → if expr then stmt |
 if expr then stmt else stmt |
 other

• The above grammar is ambiguous

• if E1 then S1 else if E2 then S2 else S3

• The above sentence’s derivation is unambiguous

• if E1 then if E2 then S1 else S2

• The above sentence’s derivation is ambiguous
• With which then does the else match?

13

Rewritten if-then-else grammar

• stmt → matched_stmt |
 open_stmt

• matched_stmt → if expr then matched_stmt else matched_stmt |
 other

• open_stmt → if expr then stmt |
 if expr then matched_stmt else open_stmt

• Idea: stmt between then and else cannot end with an unmatched (or open)
then

• The above grammar is unambiguous

14

Elimination of Left Recursion

• A → Aα | β

 can be rewritten as

A → βA'
A' → αA' | ε

15

Left Factoring

• A → αβ1 | αβ2

 can be rewritten as

A → αA'
A' → β1 | β2

• This refactoring defers the decision so it can be made when the input
symbol is available
• Useful in predictive, or top-down, or recursive descent parsers

16

Top-Down Parsing

• Starting with the left-recursive grammar:

E → E + T | T
T → T * F | F
F → (E) | id

• After applying the elimination of left recursion transformation we have:

E → T E'
E' → + T E' | ε
T → F T'
T' → * F T'| ε
F → (E) | id

• This is suitable for a top-down parser or for producing a leftmost derivation

17

Example of Recursive-Descent Parser

• Go over recursiveDescentParser.c

• Show the parse trees of

 1 – 2 * 3
 and
 1 – 2 + 3

using the grammars from before and after applying the “elimination
of left recursion” transformation

18

	Slide 1: Syntax Analysis
	Slide 2: Context-Free Grammar (CFG)
	Slide 3: Context-Free Grammar for Simple Expressions
	Slide 4: CFG Notational Conventions (1 of 3)
	Slide 5: CFG Notational Conventions (2 of 3)
	Slide 6: CFG Notational Conventions (3 of 3)
	Slide 7: CFG Derivation
	Slide 8: Leftmost and Rightmost Derivations
	Slide 9: Leftmost & Rightmost Derivation of –(id+id)
	Slide 10: Ambiguity in Leftmost Derivation of id+id*id
	Slide 11: Translation of a regex into a CFG
	Slide 12: Balanced parentheses
	Slide 13: Ambiguous else matching
	Slide 14: Rewritten if-then-else grammar
	Slide 15: Elimination of Left Recursion
	Slide 16: Left Factoring
	Slide 17: Top-Down Parsing
	Slide 18: Example of Recursive-Descent Parser

