Syntax Analysis

Prof. James L. Frankel
Harvard University

Version of 6:07 PM 19-Sep-2023
Copyright © 2023, 2022, 2018, 2015 James L. Frankel. All rights reserved.

Context-Free Grammar (CFG)

* terminals basic symbols from which strings are formed;
also called tokens

* non-terminals syntactic variables that denote sets of strings

e start symbol strings denoted by the start symbol is the language
generated by the grammar
* productions <head> - <body>

<left side> := <rightside>

Context-Free Grammar for Simple Expressions

*ESE+T|E-T|T
T>T*F|T/F|F
F->(E)|id

 E, T, and F are non-terminals

* Eis the start symbol

e+ — * /. (,), and id are terminals

 E is an abbreviation for Expression (sometimes referred to as Expr)
* T is an abbreviation for Term

* Fis an abbreviation for Factor

CFG Notational Conventions (1 of 3)

* Terminals Lowercase letters early in alphabet (3, b, ¢, ...)
Operators
Punctuation
Digits
Boldface string denoting terminal symbols (such as
id and if)

 Non-terminals Uppercase letters early in alphabet (A, B, C, ...)
S is usually the start symbol
Lowercase italic names (expr, stmt, ...)
E, T, F

CFG Notational Conventions (2 of 3)

e Grammar symbols Uppercase letters late in the alphabet
(either non-terminals (X, Y, Z)
or terminals)

* Possibly empty Lowercase letters late in the alphabet (u, v,
strings of terminals vy Z)
* Possibly empty Lowercase Greek letters (o, B, v, ...)

strings of grammar
symbols

CFG Notational Conventions (3 of 3)

* Set of productions A->ao,,A>a,,..,A>aq arecalled
with a common head A-productions and may be rewritten as
A->a|a,]|..|o

* Unless otherwise specified, the head of the first production is the
start symbol

CFG Derivation

* Derivation is the process of using productions as rewriting rules

* If A= vyisa production, then
aAB = aypB

where = means “derives in one step”

* =" means “derives in zero or more steps”

 =>* means “derives in one or more steps”

Leftmost and Rightmost Derivations

* In leftmost derivations, the leftmost non-terminal in each sentential is
always chosen.

* This is denoted by
a= B

* In rightmost derivations, the rightmost non-terminal in each
sentential is always chosen.

* These are also called canonical derivations

* This is denoted by
a=._03

Leftmost & Rightmost Derivation of —(id+id)

e Given the grammar:E—>E+E|E*E|—-E | (E) | id,
derive —(id+id)

*E> _ -E=, —(E)=,, —(E+E)= —(id+E)= —(id+id)

*E=> -E= —(E)>,,—(E+E)=> _ —(E+id)=>_ —(id +id)

Ambiguity in Leftmost Derivation of id+id*id

e Given the grammar:E—>E+E|E*E|—-E | (E) | id,
derive id+id*id

e Two distinct leftmost derivations exist:

*E> E+E> id+E=> id+E*E=> id+id*E= id+id*id
*E=> E*E> E+E*E> id+E*E> id+id*E= id+id *id

* Therefore, this grammar is ambiguous

Translation of a regex into a CFG

* The regex:
ba*bba

and the context-free grammar:
A, = bA,
A, > aA, | A,
A, - bba

derive the same language

Balanced parentheses

* The context-free grammar:

A->(A)A | e
derives any number of balanced parentheses

* This cannot be derived using a regex
* Colloquially, we say that “a finite automata cannot count”

Ambiguous else matching

e stmt - if expr then stmt |
if expr then stmt else stmt |
other

* The above grammar is ambiguous

* if E, then S, else if E, then S, else S,
* The above sentence’s derivation is unambiguous

* if E, thenif E, then S, else S,
* The above sentence’s derivation is ambiguous
* With which then does the else match?

Rewritten if-then-else grammar

e stmt - matched stmt |
open_stmt

* matched_stmt - if expr then matched_stmt else matched stmt |
other

e open_stmt - if expr then stmt |
if expr then matched stmt else open_stmt

* |dea: stmt between then and else cannot end with an unmatched (or open)
then

* The above grammar is unambiguous

Elimination of Left Recursion

cA>Aa | P
can be rewritten as

A - BA
A'> aA' | €

Left Factoring

*A->aB, | aB,

can be rewritten as

A - oA
A'->B, | B,

* This refactoring defers the decision so it can be made when the input
symbol is available

* Useful in predictive, or top-down, or recursive descent parsers

Top-Down Parsing

e Starting with the left-recursive grammar:
ES>E+T|T

T>T*F|F
FS(E)|id

» After applying the elimination of left recursion transformation we have:

E->TE
E'S>+TE |«
TSFT
T'%*FT']E
F>(E)|id

* This is suitable for a top-down parser or for producing a leftmost derivation

Example of Recursive-Descent Parser

e Go over recursiveDescentParser.c

e Show the parse trees of

1-2*3
and
1-2+3

using the grammars from before and after applying the “elimination
of left recursion” transformation

	Slide 1: Syntax Analysis
	Slide 2: Context-Free Grammar (CFG)
	Slide 3: Context-Free Grammar for Simple Expressions
	Slide 4: CFG Notational Conventions (1 of 3)
	Slide 5: CFG Notational Conventions (2 of 3)
	Slide 6: CFG Notational Conventions (3 of 3)
	Slide 7: CFG Derivation
	Slide 8: Leftmost and Rightmost Derivations
	Slide 9: Leftmost & Rightmost Derivation of –(id+id)
	Slide 10: Ambiguity in Leftmost Derivation of id+id*id
	Slide 11: Translation of a regex into a CFG
	Slide 12: Balanced parentheses
	Slide 13: Ambiguous else matching
	Slide 14: Rewritten if-then-else grammar
	Slide 15: Elimination of Left Recursion
	Slide 16: Left Factoring
	Slide 17: Top-Down Parsing
	Slide 18: Example of Recursive-Descent Parser

